RESEARCH HIGHLIGHTS
Coherent Photon States Storage in A Single Nuclear Spin in Diamond
Long distance quantum communication requires photons and quantum nodes that comprise qubits for interaction with light, good memory capabilities and processing qubits for storage and manipulation of photons. Owing to the unavoidable photon losses, robust quantum communication over lossy transmission channels requires quantum repeater networks. A necessary and highly demanding requirement for these networks is the existence of quantum memories with long coherence times to reliably store the incident photon states. Here, we demonstrate a high fidelity (~98%) coherent transfer of a photon polarisation state to a single solid state nuclear spin that has a coherence time of over 10 seconds. The storage process is achieved by coherently transferring the polarisation state of a photon to an entangled electron-nuclear spin state of a nitrogen vacancy (NV) centre in diamond. This nuclear spin based optical quantum memory demonstrated here paves the way towards an absorption based quantum repeater network.
Reference: Nature Photonics
- High-fidelity transfer and storage of photon states in a single nuclear spin
- Sen Yang, Ya Wang, D. D. Bhaktavatsala Rao, Thai Hien Tran, Ali S. Momenzadeh, M. Markham, D. J. Twitchen, Ping Wang, Wen Yang, Rainer Stöhr, Philipp Neumann, Hideo Kosaka & Jörg Wrachtrup Nature Photonics (2016) doi:10.1038/nphoton.2016.103 Published online: 06 June 2016